<table>
<thead>
<tr>
<th>factor</th>
<th>ratio</th>
<th>statistics</th>
<th>calculate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:4</td>
<td>2:8</td>
<td>3:6</td>
<td>2 + 3 = 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>algebra</th>
<th>decimal</th>
<th>prediction</th>
<th>estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^2 + b^2 = c^2$</td>
<td>0.4</td>
<td>!</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>parallel lines</th>
<th>reflection</th>
<th>rotation</th>
<th>translation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Maths Visuals

\[
\frac{1}{2} = \frac{2}{4} = \frac{4}{8}
\]
equivalent

ascending

descending

y-axis

\[
\frac{1}{3} \quad \frac{1}{10}
\]
difference

rotate

obtuse

< 90°

< 90°

acute

3 \times 2 =
multiplication

\div

division

\frac{7}{10}
fraction

3a = 10
equation

© Worcestershire Speech and Language Therapy 2017
<table>
<thead>
<tr>
<th>Geometry Term</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>area</td>
<td></td>
</tr>
<tr>
<td>perimeter</td>
<td></td>
</tr>
<tr>
<td>sector</td>
<td></td>
</tr>
<tr>
<td>angle</td>
<td></td>
</tr>
<tr>
<td>radius</td>
<td></td>
</tr>
<tr>
<td>circumference</td>
<td></td>
</tr>
<tr>
<td>diameter</td>
<td></td>
</tr>
<tr>
<td>cube</td>
<td></td>
</tr>
<tr>
<td>pyramid</td>
<td></td>
</tr>
<tr>
<td>hexagon</td>
<td></td>
</tr>
<tr>
<td>pentagon</td>
<td></td>
</tr>
<tr>
<td>triangle</td>
<td></td>
</tr>
</tbody>
</table>
Maths Visuals

net chord pythagoras Area of a circle